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Suspensions of rigid rodlike particles in Newtonian suspending fluids are 
considered. We discuss the dependence of the relative viscosity /~r upon the 
volume fraction of particles ~, their aspect ratio Or, and the particle orientation 
distribution when the particles are sufficiently large that hydrodynamic forces 
are dominant.  Theoretical results are reviewed for a variety of long slender 
particles. Experimental results obtained using classical rheometrical techniques 
are discussed. It is shown that when a r~<25, data from several laboratories 
agree and they indicate that ,u r depends more strongly upon ~b than at. Previous 
experimental results using falling ball rheometry are discussed as well as some 
more recent findings. These are shown to provide insights heretofore unavailable 
into the macroscopic rheology of suspensions of randomly oriented and oriented 
rods. 

K E Y  W O R D S :  Rheology; rods; viscosity; aspect ratio; suspension. 

1. I N T R O D U C T I O N  

This paper focuses on measurements of the theological or flow properties 
of suspensions of rigid rodlike particlcs in Newtonian suspending fluids. 
We are principally concerned with suspensions having particles sufficiently 
large that hydrodynamic forces dominate, as specified by the rotary Peclet 
number Npe = ~/Dr >> I, where ~ is a characteristic shear rate of the flow 
and Dr is the rotary Brownian diffusion coefficient. The particle Reynolds 
number will always be sufficiently small that inertial effects can be neglected, 
NRc = pfM~,/l~,. ~ 1, where p is the fluid density, dp is a characteristic particle 
dimension, and/t.,, is the viscosity of the suspending fluid. 

Typical suspensions which fall into these categories consist of short 
glass or graphite fibers in a high-viscosity silicone oil, or, at the early 
stages of curing, an epoxy resin. Such suspensions can exhibit strong 
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nonlinear behavior. For example, using classical rheometrical techniques 
for determining the shear viscosity often gives rise to a nonlinear shear 
stress versus shear rate relationship which can be interpreted in terms of a 
shear thinning viscosityJ 22"39~ Rod climbing, 2 associated with normal 
stresses in viscoelastic fluids, is sometimes observed for suspensions of 
high-aspect-ratio particles in a Newtonian fluid. The recent work of 
Lipscomb et aL ~ on entry flows also shows that small amounts of high- 
aspect-ratio particles have a large effect on the flow field. 

A primary interest in both theoretical and experimental theology is the 
determination of the shear viscosity It. For suspensions in a Newtonian 
fluid, the relative viscosity It, = #/It,. is usually taken as the characteristic 
material propertyJ 31~ A suspension of uniform particles has a relative 
viscosity which depends upon the detailed geometrical description of the 
particles, ~ their orientation distribution, as well as the volume fraction 
of particles q~. This reduces to a dependence upon (b only in the case of 
spherical particles. 

We shall consider the two most widely studied elongated particles: 
prolate ellipsoids, having a major axis of length 2h and a minor axis of 
length 2a; and, rods having length L and diameter d. Each particle is 
characterized by its aspect ratio, a,=b/a or Lid. These particles are 
considered as slender bodies when ~= {In 2a,} ~< 1, which, if a,~. 11,000, 
is about 0.1. We restrict our attention to suspensions in which ~3~> D,, 
with D,=kT/(6ItsVp'KL),  where k is Bottzmann's constant~ T is the 
temperature, lip is the particle volume, and 'KL is a geometrical 
constant. ~ For blunt-ended (rodlike) bodies H4'28j 

[ o. o i } 
r K j - " ~ - ' 9  /.ln a, L1 - 1-~a, j + 0.651 

while for long, thin, prolate ellipsoids, ~141 

r g •  - -  m m 

3(In 2a , -0 .5 )  

Section 2 provides a brief review of the theoretical work relevant to 
the prediction of the relative viscosity of suspensions of elongated particles. 
When hydrodynamic forces are dominant, theoretical difficulties arise in 
the calculation of/~, which make the problem indeterminate and necessitate 

2 Rod climbing refers to an experiment in which a solid cylinder is rotated at a constant 
angular velocity about its axis of revolution in a suspension. The stresses generated in 
suspension cause it to climb up the rod, as opposed to being moved away from the cylinder 
due to centripetal forces. 
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the introduction of rotary Brownian forces. Although suspensions in which 
hydrodynamic forces dominate are the principal focus of this work, we 
include a broader set of results which are necessary to critically evaluate 
experiments. More complete reviews of the theories may be found elsewhere 
(e.g., see refs. 2, 8, 14, and 35). We discuss one problem in which when only 
hydrodynamic forces are present, a determinate form of the extra stresses 
due to the presence of the particles can be calculated, namely, uniaxial 
extensional flow. We mention a new theoretical approach which allows 
momentum transport to be calculated in suspensions of slender fibers even 
when NpE >~ 1. Not covered in this review, but worthy of note, is the recent 
use of liquid crystal-type continuum models to describe the flow of fiber 
suspensions. 13, 37) 

Section 3 discusses available experimental results and presents some 
new findings by Ganani ~23) and Morrison. t48~ Section 3.1 is concerned with 
the determination of the shear viscosity and the effect of the particle 
geometry and concentration. We demonstrate that agreement is emerging 
among various laboratories on the effect of ~b upon/tr for low-aspect-ratio 
particles. We provide a summary of evidence for the relationship between 
the suspension microstructure and macroscopic stresses, as reflected by the 
transient stresses observed upon the inception of shearing flow. Section 3.2 
briefly deals with experimental results for the extensional (Trouton) 
viscosity in light of the recent theory of Acrivos and Shaqfeh. ~t~ Lastly, 
Section 3.3 summarizes the findings made with my co-workers t25'43'46'~3~ 
using falling ball rheometryJ 45~ We show that this technique can be 
used to determine the viscosity of both randomly oriented and oriented 
suspensions. 

2. T H E O R E T I C A L  R E S U L T S  

Investigations of the mechanics of suspensions of elongated particles 
began with Jeffrey's !3~ calculation of the disturbance flow produced by a 
neutrally buoyant, isolated ellipsoidal particle in an unbounded linear flow. 
Specializing his results to shearing flow, having Cartesian components 
(}xz, 0, 0), such a particle is found to rotate periodically in Jeffrey orbits 
which depend uon the particle's geometry and its initial orientation relative 
to the flow. For an ellipsoid of revolution (spheroid) the period is given by 

2n(ar+ar i) 
Ts--- (1) 

Blunt-ended bodies also execute Jeffrey orbits; however, their periods 
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of rotation are not given directly by Eq. (!). Rather, an equivalent aspect 
ratio 

1.24at 
at,. (In or) 1/2 (2) 

is definedJ 16)To calculate the period of rotation, L/d is measured and used 
in Eq. (2) to calculate at,,, which is inserted in Eq. (I). 

Jeffrey wished to determine the viscosity increase due to the presence 
of hydrodynamically isolated nonspherical particles. In the context of 
suspension rheology, this amounts to determining [p], the intrinsic 
viscosity, which for a dilute suspension (~b--, 0) is related to # through 

~=~,,.(I + [~]~) (31 

However, the rotations of the particles rendered his energy dissipation 
calculation indeterminate: rather than [,u] being a constant, it is time 
dependent, reflecting the instantaneous particle orientation, and dependent 
upon the initial particle orientation. The minimum [/~] for some particles 
can be less than 2.5, the value for spheres. "9~ Jeffrey 13~ discussed 
mechanisms by which this indeterminate problem could be made theoretically 
determinate, including: (1) using an averaging scheme over a population of 
randomly oriented particles, and, (2) speculating that inertia might cause 
all particles to drift toward a specific orientation which is stable. In most 
suspensions, inertia does not operate on a time scale sufficiently small to 
make its practical observation possible. The former view was taken/by 
SimhaJ 59~ who calculated the excess power dissipation associated with 
maintaining a suspension randomly oriented while it undergoes shearing 
flow and thereby obtained [/~3 for prolate and oblate ellipsoids. Simha's 
intention was to calculate the viscosity of a suspension subject to strong 
Brownian forces. However, his technique accounts for Brownian forces in 
an ad hoc way, rather than using a conservation law for the orientation 
distribution function and directly inserting the Brownian diffusion term 
including the direct Brownian contribution~ This 'was recognized by 
Kirkwood and co-workers ~54) and Saito. ~55~ Saito ~55t and Scheraga ~56~ 
developed theories which correctly accounted for rotary Brownian forces in 
suspensions of spheroidal particles; however, both obtained the same 
algebraic relationship between [~] and ar as $imhaJ sg~ Haber and 
Brenner tz6) were the first to resolve this paradox by showing that Simha's 
theory assumes that: (i) the particle angular motions are not determined by 
Jeffrey's hydrodynamical analysis, but rather, the particles rotate with the 
local angular velocity of the fluids; and (ii) the direct Brownian contribu- 
tion to the stress is zero. The contributions to the bulk stress due to each 
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of these factors were shown by Haber and Brenner (26) to be first order. 
However, they cancel exactly when the particles are bodies of revolution, 
such as rods or prolate ellipsoids. This cancellation renders Simha's 
formula fortuitously correct for suspensions of particles subject to strong 
Brownian motion. It might somewhat more accurately be cast as a formula 
for a suspension of rods which maintains a random orientation distribution 
in shearing flow--by whatever means. For large aspect ratios, this 
theory/s9) as well as the correctly formulated theories for suspensions 
subject to strong Brownian motion by Saito (55) and Scheraga, (s6~ yields 

2 2 1 4  
a r a r  [u] 

15(In 2 G -  3/2) 4- 5(ln 2a~-  1/2) +15-- 
(4) 

The intrinsic viscosity for suspensions of randomly oriented, long, 
slender, rodlike bodies is 

[~] = ( 5 )  
15 l n G  

which, when blunt ends are added, becomes more complicated and will not 
be given hereJ 14~ The difference between the predictions for two types of 
particles can be large, as demonstrated by the following examples: 

a~ = 19.8 ~25'43) 

prolate ellipsoids: [kt] =44.8 

a~ = 48.9 ~42~ 

blunt-ended rods: [#]  =29.2 

prolate ellipsoids: [/~] = 170 blunt-ended rods: [/~] = 121 

Strong Brownian forces are not necessary to eliminate the indeter- 
minacy in the calculation of [/~]. When either (a 3 + a  r 3),~N w or when 
I ~Np~4.(a~+ar 3) and a ~  oo, Hinch and Leal ~27) showed 

(a~+a;3),~Npc: i-#]=0.315 ar (6a) 
In ar 

1 ~Np~4.(ar+afl)3: ~]=Nffr 1/30"5a2 (6b) 
In ar 

In the complete absence of Brownian forces, the stress in a Suspension 
of rods is determinate for flows in which the induced macroscopic particle 
motion does not include a rotational component. In one such flow, uniaxial 
extensional flow, large elongated particles will, at steady state, align along 

822/62/5-6-13 
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the extensional axis and thereby produce a constant orientation distribution. 
The Cartesian components of the undisturbed velocity are (~xv, - l ~ x 2 ,  
- �89 x3), where ~ is the extensional rate, and x~ is the extensional axis. The 
stresses in this flow are characterized by the extensional or Trouton 
viscosity #v, which for a Newtonian fluid is three times the shear viscosity. 
Using slender-body theory, Batchelor c6"7~ first calculated the relative 
Trouton viscosity #x, for a suspension of completely aligned rods. His 
results are valid for both dilute and concentrated suspensions, as charac- 
terized by an average interparticle spacing h =  (nL) ~/2 where n is the 
number density of rods. A dilute suspension has L/2h ,~ I [or ~:n(L/2) 3 ~ I ] 
and 

2~aa~ (1 + 0.64,: ) 
# x =  I + - - ~  \ 1 S  1-'-~e, + 1'659~:2 (7a) 

whereas, in a concentrated suspension d,~ h ~ L, and 

4~ba~ 
t~'r~ = 1 4 9 ln{n/~) (7b) 

The effective medium theory of Acrivos and Shaqfeh ~t~ has recently 
been used to calculate #vr Their theory holds for particles having 
a~ ~,~ 1 and over the concentration range ~b,~ a r 2 (dilute) to 1 >> if,> a r 2 
(concentrated), and hence has broader applicability than the cell model 

Batchelor. For concentrated suspensions they obtain a formula used by �9 (7) 
identical to Eq. (7b), except that the factor of n/~ is replaced by 6/~b. A 
highly promising approach to the study of suspensions of fibers has been 
pursued by Shaqfeh and Fredrickson, ~ss~ who have examined heat, ~57~ 
mass, ~2~ and momentum transport. r In this last case, they calculated the 
relative viscosity in aligned and randomly oriented suspensions through 
the semidilute range [as defined by n(L/2)3>> 1 and nd(L/2)2< 1]. For 
dilute suspensions, their results correspond with Batchelor'sJ 7) To first 
order, semidilute suspensions are found to behave similarly, regardless of 
whether the particles are randomly oriented or completely aligned. To 
O(l/ln2(l/ff)), these results are summarized as follows: 

Slender Cylindrical Fibers 

nnL3 {1 (random) (8a) _ In ln(l/~b) + 0.6634 
# r -  1 3 ln(1/~b) ln(l/~b) ln(l/~b)) 

~nL 3 
.ur - 1 = 3[ln(1/~b) + In In(lab) + 0.1585] (aligned) (8b) 
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Slender  Ell ipsoids 

lrnL 3 { In ln(1/~b) 0.6170] 
~ -  1 31n(1/~b) 1 ln(1/~b) ~ J  (random) (9a) 

rcnL 3 

k~ - 1 - 3 [ln(1/~b) + In In(lAb) + 1.4389] (aligned) (9b) 

3. E X P E R I M E N T A L  R E S U L T S  

3.1. Shear ing  F lows 

There has been considerable effort to obtain unambiguous measure- 
ments of the shear viscosity of suspensions of rodlike particles in order to 
provide the same level of understanding that exists for suspensions of 
spherical particles, at least at low to moderate volume fractions. 3 In an 
early review ~39) large scatter in the data from laboratory to laboratory 
caused any correlation attempt to fail. A later effort (22) apparently 
succeeded in this regard, although Ganani and Powell ~23) subsequently 
noted this was likely fortuitous. There are no quantitative measurements 
which clearly delineate the effect of aspect ratio and volume fraction on the 
relative shear viscosity of suspensions of rods in a Newtonian fluid, that is, 
l~r(ar, ~b). In this section, we discuss some of the more recent results for 
measurements in shearing flows. 

Recent experimental results (9'23"2s'29) have shown that fiber suspensions 
in Newtonian fluids cannot be characterized solely by their steady-state 
shearing response. The transient shearing response, that is, the develop- 
merit of the stresses in the fluid after the imposition of shearing flow, must 
also be considered, in a dilute suspension, this response is wcU-dcfincd. 
Rods which are initially aligned will, upon imposition of shearing, rotate in 
their Jeffrey orbits, causing periodic stresses/2s'2'~1 Figure 1 demonstrates 
such behavior. Here /%/~b versus t~(a~+ct  r I)  i is plotted for various 
values of the volume concentration. The time axis is nondimensionalized by 
the time scale associated with a single-particle Jeffrey orbit. In all cases, 
the time-dependent viscosities (or transient shear stresses) are periodic 
with a decaying amplitude. This decay can result from several sources. 
Okagawa et  aL ~5'~ showed theoretically that slight aspect ratio variations 
can result in a decay time scale of %=a~.fl(&~)~)-% where a 7 is the 

Jeffrey and Acrivos ~j~ provide an excellent review of the rheology of suspensions of spherical 
particles, although, since their review, simulation studies ~3~ and the elucidation of effects 
associated with shear-induced migration cs6~ have led to reinterpretation of many of the 
earlier results. 
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Fig. I. The  t ime-dependent  specific viscosity (/~,p/q~) for suspens ions  of rods (a, 5.2, 
a ~ = 0 .  , ] ;=2.51 sec ) of  var ious  volume percents. The  rods are initially aligned and 
shear ing  is initiated at t /Tj = 0 .  (Reprinted from Ivanov et alJ 2~ ( 'opyr igh t  1982 J. RheoL). 

standard deviation in the mean aspect ratio distribution r/r, and J'~(ar)= 
(6~+l)2/(x/~lt~2-1l). For ~r=5.2 rods, %=0.78T,, where Tj is the 
mean period of rotation. This provides a reasonable estimate for the decay 
times indicated by the data in Fig. 1. A second mechanism, two-body inter- 
actions with the associated time scale zo = (~-t In ar)/nL3, ~51~ was observed 
at the higher concentrations. Two other mechanisms could possibly 
account for the stress decay: weak Brownian motion tzT~ and particle inertia. 
However, in the experiments in Fig. 1, decay due to weak Brownian 
motion, which scales as D r t, is negligible. Likewise, Reynolds numbers are 
very small, and inertial effects can be ignored. 

Transient effects at higher volume fractions have been examined by 
Ganani, ~22~ Ganani and PowellJ 23~ They showed that semiconcentrated 
suspensions of nearly monodispersed short glass fibers (~r=24.3, 
a 7 = 1 1.3 % of the mean) exhibit shear stress transients qualitatively different 
from those found by Ivanov et al. (28"2~) In the initial transient period (that 
is, those transient shear stress data taken immediately after loading their 
rotational viscometer), they observed shear stresses similar to those found 
for polymeric fluids, t~~ Upon inception of shearing, the shear stress grows, 
reaches a maximum value (stress overshoot), and then decays to a final 
steady state. Depending upon the shearing histories, more complicated 
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Fig. 2, The effect of intermittent shearing on the torque (shear stress) obtained while 
shearing (~=43.7sec 1) a suspension (r of fibers (6,=24.3) in a cone and plate 
viscometer (75 mm diameter, 1" angle). The sample is initially loaded in the viscometer and 
shearing in the clockwise direction is initiated. Shearing is then stopped and the sample is 
allowed to rest for 1 rain before being resumed in the same direction. Next, shearing is stopped 
and the sample rests for I0 rain. In the final sequence, after allowing the sample to rest for 
l rain, shearing is resumed, but in the counterclockwise (reverse) direction. 

behavior was also found. In the experiment shown in Fig. 2 the suspension 
is initially sheared in the clockwise direction, and a stress overshoot observed. 
Shearing is then stopped and resumed after 1 min, with no overshoot being 
observed. Indeed, the stress response is instantaneous, reflecting Newtonian 
fluid behavior�9 Upon cessation of shearing, waiting for 10 min, and then 
resuming shearing in the same direction, a shear stress overshoot is again 
observed similar to that found in the first experiment�9 It appears that the 
particles tend to rerandomize during extended periods at rest. Because of 
the size of the particles used (D, = 3 x 10-~1 sec-~), slight sedimentation is 
the only possible mechanism. The last sequence in Fig. 2 shows the effect 
of reversing the flow after letting the suspension rest for 1 rain. A transient 
period is observed, including a stress overshoot, prior to reaching steady 
state. The suspension assumes a new microstructure on a time scale similar 
to that found in the first and third experiments. This behavior corresponds 
to that found in highly concentrated suspensions of spherical particles�9 ~2~ 
However, while later work 136~ has shown that shear-induced migration may 
be responsible for the behavior found by Gadala-Maria and Acrivos, (2~1 it 
is unlikely that such a mechanism is dominant here. Rather, we expect that 
network structures, formed upon loading the suspensions or as a result of 
slight sedimentation during periods of resting, give rise to the observed 
transients. It would also seem likely that shear-induced diffusion in suspen- 
sions of high-aspect-ratio particles would likely act on a time scale different 
from that found for spherical particles. 

From the transient studies we see that for sufficiently long times, an 
equilibrium orientation distribution is obtained which allows a steady 
shear viscosity to be measured. If no randomizing influences are present, 
the equilibrium distribution should be the same in all shear flows, and, in 
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principle, /tr(a r, ~b) can be determined. This appeared feasible using the 
data available prior to 1985, ~23~ at least for semiconcenlrated suspensions, 
which were previously defined as having a r 2<q~< a, ~ However, mosl 
of these data, particularly for aspect ratios of 100 or greater, exhibited 
shear thinning behavior, implying the existence of a time scale which 
characterizes the onset of such behavior. The only two time scales which 
were operative in most suspensions were ~ and r, ,  both of which are 
proportional to ~ i. Using such time scales reduces all of the data for a 
particular suspension to a single vertical line (on a relative viscosity versus 
dimensionless shear rate plot) and hence, would not supply the appropriate 
scaling. Most existing data, particularly those at higher aspect ratios, there- 
fore include some experimental artifacts which make their use in obtaining 
a master curve for /dr(at, ~b) questionable. At lower aspect ratios, say 
a,. ~< 25, the available data are consistent with the notion that suspensions 
in Newtonian fluids should, under steady shearing conditions, themselves 
be Newtonian. 19"23'2~'33~ There appear to be particle boundary interaction 
effects at the higher aspect ratios (despite claims that such effects should 
not be significant when the ratio of the characteristic viscometer gap to 
particle length is greater than 1.2,19) or persistent transient effects. It is 
unlikely that slight shear thinning in the suspending fluid causes shear 
thinning in the suspensions/4~ At high shear rates, suspensions of spheres 
in Newtonian 115~ and slightly viscoelastic 12It fluids can show very slight 
shear thinning behavior, but not the dramatic effects found in suspensions 
of rods. 

Figure 3 shows a comparison of some of the more recent data for u~ 
obtained by three different groups t9.23"2s~ for low-aspect-ratio particles. The 
data might best be considered in two sets: particles having a,. = 17 and 24.3, 
and particles having a, = 5.2 and 6. The data for particles having the higher 
aspect ratios nearly coincide. However, the lower-aspect-ratio data are 
dramatically different. In fact, the ar = 6 data of Bibbo et al/9! are generally 
larger than any of the other data. Ivanov e t  al. 's  ~28~ data 4 roughly coincide 
with the data for the higher aspect ratios, although the highest volume 
fractions used by that group was only 0.023. It appears that for small- 
aspect-ratio particles in the dilute to semiconcentrated regime, the vohame 
fraction primarily influences the relative viscosity, with the effect of aspect 
ratio being secondary. As discussed below, the relative viscosity of suspen- 
sions of randomly oriented rods shows a strong dependence on the aspect 
ratio as well as the volume fraction. When the rods are aligned, for exam- 
ple, by shearing flow, the effect of aspect ratio diminishes, Such a result is 
corroborated by the recent experiments of Kevilte/33~ Using particles 

4 To obtain the actual values, we have used [,u] ~ 5. 
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Fig. 3. Relative shear viscosity versus volume fraction for suspensions of rods as measured 
using rotational rheometers. ( A )  a, = 5.2, ~2~1 (f I) a ~ = 6  and (O)  a~= 17, (9~ (11) a~= 24.3. I~~ 

having i < a, < 7 at volume fractions up to 0.12, he found little difference 
between Pr for their suspensions and the values which would be expected 
if the particles were spherical. 

3.2. Extensional  F lows 

The best agreement between rigorous theories TM 7, 57, 5~I and experimental 
results T M  has been obtained in the case of uniaxial extensional flows. 
It is assumed that complete fiber alignment can be obtained experimentally. 
However, recent work of Pittman and Bayram r appears to show that 
such alignment cannot be experimentally realized at high concentrations, 
where hindered rotation of particles does not allow parallel fiber alignment 
to be achieved. As predicted, the measured extensional viscosity is inde- 
pendent of the extensional rate, and is considerably higher than the 
viscosity of the suspending fluid. The measurements of Mewis and 
Metzner r and Pittman and Bayram ~52) cover the widest range of aspect 
ratios a n d  concentrations. Their data and the theories of Batchelor, (7~ 
Acrivos and Shaqfeh, (~1 and Shaqfeh and Fredricksen (58~ are compared in 
Table I in terms of c~, where ~ = (/~V -- 1 )/3~.,.. In the latter case~ we use 
Shaqfeh and Fredricksen~s ~58~ results for aligned rods. All three theories 
match the data of Mewis and Metzner (41~ reasonably well. Batchelor's (7~ 
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Table I. Comparison between Extensional Flow Data ~4Ls~ and the Theories 
of Batchelor, (7~ Acrivos and Shaqfehfl ~ and Shaqfeh and Fredricksen *sx~ 

(Theoretical) 

Reference ar ~ ct ( Measured ) ref. 7 ref. I ref.58 

Mewis and Metzner .4~ 

Pittman and Bayrarn ~s2~ 

282 0.00930 51 56.5 50.8 51.5 
586 0.00099 17.5 18.7 17.3 !6.8 
586 0.00287 74 62.6 57.3 56.3 
586 0.00890 260 231 208 211 

1259 0,00096 59 83,6 77.3 74.8 

54 0.0014 0.35 0.314 0.29 0.28 
54 0.003 0.50 0.746 0.68 0.66 
54 0.009 2.36 2.66 2.40 2.39 

300 0.0004 t .48 1.8(1 1.68 1.60 
300 O.O(gl5 1.84 2.30 2.14 2.(16 

theory predicts the data  for the a , =  586 suspensions at the highest two 
volume fractions slightly better than the other two theories. Shaqfeh and 
Fredricksen's (58t theory is slightly better in the other three cases, and it is 
almost  always better for the data  of  Pi t tman and Bayram. ~52~ This 
last point is particularly significant, since the theory of Shaqfeh and 
Fredricksen ~s8t can be applied to smaller values of at- ~, such as the ar = 54 
found in Pi t tman and B a y r a m ]  s2) than either the theory of Batchelor ~7~ or 
Acrivos and Shaqfeh. ~1~ These very positive comparisons between recent 
theoretical and experimental studies indicate that our  understanding of the 
extensional flow of fiber suspensions is poised for further advances, with 
more data  being necessary to provide adequate verification of theories. 

3.3. M e a s u r e m e n t s  of  the  V iscos i t ies  of  Suspensions of  Rods 
Using Fal l ing Ball R h e o m e t r y - - T h e  M i l l i k e n  P r o b l e m  s 

3.3.1.  V iscos i ty  M e a s u r e m e n t s  of  R a n d o m l y  O r i e n t e d  
Suspensions.  The measurements and theories described in previous 
sections assume that suspension properties can be observed on a scale 
which is large relative to a typical length scale in the suspension. This 
characteristic length might be related to particle dimensions or  interparticle 
spacing. Suspensions of  rods there can possess different interparticle 
spacings if the rods are aligned t71 or  randomly  oriented. ~17/ 

5 As first applied by Prof. Sangtae Kim. 
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While theories for suspensions of rods are explicit in their use of a 
particular, e.g., volume, averaging scheme and careful in their definition of 
the appropriate averaging lengths, the same accuracy of definition cannot 
usually be found in experiments. The macroscopic shear viscosity must be 
independent of viscometer geometry, which must be ascertained empirically. 
An entirely different avenue consists of conducting an experimental 
program using ensemble rather than volume averaging. (7) The ensemble 
would consist of many realizations of the same macroscopic experiment. In 
each realization, the suspension experiences the same macroscopic condi- 
tions, but the exact locations and orientations of the particles are different. 

Recently, my co-workers and I have used the ensemble average 
approach to determine the macroscopic viscosity of suspensions of 
rods. (25'42'43"48'53) A realization consists in moving a sphere under a 
constant force through a homogeneous suspension of neutrally buoyant, 
randomly oriented rods. The terminal velocity is measured and used to 
calculate the suspension viscosity, over which the ensemble average is 
taken. 

In these experiments, large, macroscopic rods are suspended in a 
density-matched Newtonian fluid. The suspension is characterized by the 
aspect ratio of the suspended particles and their volume fraction, and it is 
stirred prior to each experiment to achieve a new realization. A brass ball 
bearing sufficiently small so as to only slightly disturb the microstructure 
is dropped along the centerline of the column. Measurements are made 
according to the criteria of Sonshine eta/. (6~ to eliminate effects due to the 
upper liquid free surface and the bottom bounding surface of the glass 
column. The viscosity is calculated using Stokes' law for the velocity of a 
sphere moving at zero Reynolds number through a Newtonian fluid under 
a constant force coupled with the correction for wall effects, 

{ " gd~"H(Ph--P) 1--2.104 d'~'' [dh,,,,] [db~,,15 t 
# -  lSv ~--~o1+2.09 t _ ~ _  ~ - 0 . 9 5 t _ ~  J (10) 

where Pb is the density of the failing ball, db,H is its diameter, and Dco~ is 
the diameter of the column containing the suspension. Equation (10) is 
correct to O(dban/Dcol) s and assumes that the suspension behaves as a 
Newtonian fluid. It has been verified for suspensions of rods (43's3) and 
spheres. (45) 

For a particular (nominal) size of the test sphere, the viscosities 
calculated using Eq. (10), /~i, are ensemble-averaged to obtain the average 
macroscopic viscosity, that is, 

' i  ~.v~=~ ~i (II) 
i = 1  
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Usually, at least ten realizations must  be used before an ensemble is 
achieved which is independent  of  the sample size, as measured using a t-tes~ 
with a 95 % confidence interval. 

The principal results of the experiments  of Milliken et  t//., (43) presented 
in terms of #~p = / ~ r -  1 versus ~b, are shown in Fig. 4. These were obtained 
using suspensions of  rods having an average aspect ratio of 19.8 and are 
typical of all results to date. 148) Each symbol  in Fig. 4 represents the 
average of four ensembles (test sphere diameters) ,  each of which was made  
over  abou t  20 realizations (individual experiments) .  There  are three 
features of Fig. 4 to note, each of which is consistent with our  more  recent 
findings. 1481 First, if, on a logari thmic basis, the da ta  for the four lowest 
volume fractions are fit to a straight line, we find that  ~t~p~b. This implies 
that  the suspension is dilute and its viscosity is given by Eq. (3). Second, 
if the da ta  beyond this dilute regime are again fit to a straight line (using 
the data  for the three highest concentrat ions)  we find lhat ~0,~ ~ .  Lastly, 
the transit ion between these two regimes occurs at ~) = 0.12. In the remaindcr  
of this section, we discuss the implications of each of these findings. 
Additionally, we shall ment ion some new results ~4~J on  the effect of thc 
viscometer  boundaries.  

102 
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Fig. 4. Specific viscosity versus volume fraction for suspensions of randomly oriented rods 
(~r = 19.8, a7 =0.73) as obtained using falling ball rheometry. ~'~ Each data point represents 
the results of approximately 80 individual experiments. The error bar is the 95 % confidence 
limit; on each of the other data points, the 95% confidence limit falls within the data point. 
The solid line is the best fit through the four points having the lowest volume fraction 
(,u~p = 28.5~b TM, ~b < O. 125). The dashed line is the best fit through the three points having the 
highest volume fraction (/tsp = 2040~b TM, qt > 0.125). 
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At first glance, the physical characteristics of these suspensions and the 
unique nature of the measuring instrument do not allow for comparisons 
between our results and existing theories. Our suspensions consist of 
randomly oriented rods in which Brownian forces are absent. As discussed 
previously, when measuring the shear viscosity in a viscometric shearing 
flow, such rods tend to align along the planes of shear. Ideally, we wish to 
compare our findings with calculations of the shear viscosity of randomly 
oriented suspensions, as measured, say, in shearing flow, with the caveat 
that the randomness is not induced by strong Brownian forces. Rather, the 
randomness must be imposed artificially; which, in essence, is the approach 
of Simha. ~59J By correctly identifying the range of validity of his theory (to 
bodies of revolution), Haber and Brenner (26) have justified comparing the 
theoretical value of the shear viscosity for a suspension of rods subject to 
strong Brownian forces (14) with the results from our experiments, in which 
the test sphere experiences a suspension of randomly oriented rods 
dominated only by hydrodynamic forces. The value of [/~] obtained by 
Milliken et al. ~43~ is 27.6, while Brenner's theory (m for blunt-ended rods 
yields a value of 29.2, a difference of about 5.5%, well within the 
confidence limits of our data. Subsequent measurements by Powell et al. ~5~ 
further demonstrated the usefulness of Brcnner's theory for predicting the 
results of falling ball rheometry, although for the a, = 10 rods used in that 
study, the agreement was only to within about 30 %. This might be attributed 
to the use of slender body theory in obtaining Brenner's results, which 
should only apply in the limit of large aspect ratio. Recent results of 
Morrison ~4~ further support this finding. To carry these arguments one 
step further and compare the results of the falling ball experiments with 
viscosities of suspenslons of rods subject to strong Brownian motion 
obtained using conventional rotational viscometers is difficult. The most 
significant effort Io perform such measurements has been that of Kevillet~; 
however, his particles were of such low aspect ratio (a, ~< 7) that the intrinsic 
viscosity could essentially not be distinguished from the value expected for 
a spherical particle. 

Our findings concerning the form of the #~p versus ~b curve at high 
concentrations and the transition point between dilute and (semi) concen- 
trated behavior do not enjoy the same theoretical justification as the 
findings in the dilute regime. The/~poc~b 3 behavior m'48) is consistent with 
the theory of Doi and Edwards ~m for solutions of rodlike macromolecules. 
The relationship for viscosity is obtained using 

nk T 
1~ = ~ . , . + - -  (12) 

D, 

where n is the number density of rods, k is Boltzmann's constant, T is 
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temperature, and D~ is the rotary diffusion coefficient. For (semi) 
concentrated solutions 

~D~o (13) 
D~ - (nL3)2 

where fl is a constant of order unity t17~ and Oro = (kTln ar)/(3rtF~L ~) is the 
rotary diffusion coefficient for an isolated rod of high aspect ratio. Combining 
Eqs. (12) and (13) leads to ~pCC~b 3. Hence, the dependence found by 
Milliken et  aL 143~ and Morrison, t48) while consistent with the Doi-Edwards 
formulation, cannot be mechanistically described by it. Rotary diffusion is 
explicitly required. Furthermore, most experimental verifications of their 
theory t4vs~ have come from measurements of the rotary diffusion 
coefficient rather than viscosity. 

The falling bali results are also consistent with the predicted transition 
concentration between dilute and (semi) concentrated solutions of rodlike 
macromolecules. This transition is defined in terms of the parameter [~, 
which is the critical value of n L  3 where rods become locked into cages 
wherein they can only diffuse along their lengths. In the ori:gina| Doi 
Edwards t~7~ theory, fl is a constant of order unity. Subsequent molecular 
simulationsl]l,32.38~ yield [I ~ 50-70 which is consistent with the falling bali 
results, t43'4~) where 60~<fl~< 75. This apparently shows that the dilute to 
semiconcentrated behavior results primarily from steric effects rather than 
hydrodynamic effects. 

3.3.2. Viscosity Measurements of Oriented Suspensions. 
The macroscopic flows of conventional rheometric techniques, based upon 
viscometry and elongational rheometry, orient the rods in suspension. The 
falling ball rheometer only disturbs the microstructure slightly, and so 
provides a measure of the resistance to flow of the microstructure which is 
induced prior to an experiment. In a recent pape:r ~46) we have determined 
the viscosities of oriented suspensions by falling ball rheometry using rods 
of a single aspect ratio (a, ~ 20) at two volume fractions, 0.02 and 0:05. The 
viscosities agreed quite well with the shear viscosity measurements of 
Ganani and PoweI1, ~23) who conducted shear flow experiments using 
suspensions of nearly monodispersed glass fibers having nominal aspect 
ratios of 25. They were also substantially lower than the viscoskies of 
randomly oriented suspensions. At ~b = 0.02 the relative viscosity of the 
randomly oriented suspension was 30% larger than that of the aligned 
suspension, whereas for the ~b =0.05 suspension, it was nearly 60 % larger. 
Both differences were wall above the uncertainties in the measurements and 
they provide conclusive evidence of the effect of the mean orientation distri- 
bution on the net resistance to flow. These results also show the possibi]ity 
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of using falling ball rheometry to determine a wide spectrum of properties 
in suspensions, including a viscosity tensor for anisotropic suspensions. 
They appear to contradict the results of Shaqfeh and Fredricksen,(587 who 
predicted the same viscosity for dilute suspensions of randomly oriented 
and aligned rods. It is plausible that the falling ball technique, while being 
a sensitive probe of microstructure, may not yield theoretically well-defined 
measures of the suspension viscosity of aligned systems. On the other hand, 
previous theoretical studies have demonstrated that the intrinsic viscosity 
of suspensions of prolate ellipsoids is significantly lower when weak 
Brownian forces are present ("aligned") than when the Brownian forces are 
dominant ("randomly oriented"). This raises the possibility that the results 
of Shaqfeh and Fredricksen ~Ss) cannot be simply compared with either 
earlier theoretical or experimental studies. 

3.4. E f fec ts  of  V i s c o m e t e r  Boundar ies  

As a material property, viscosity must be independent of the rheometer 
used for its measurement. For suspensions of rods, particularly critical is 
the ratio of the characteristic length associated with the viscometer to the 
length of the rod. ideally, any measurement would be made in a sufficiently 
large device (e.g., a sufficiently large-diameter capillary, a sufficiently 
large-gap Couette viscometer) that there is no effect of the bounding 
surfaces. In a dilute suspension, individual rods could execute their Jeffrey 
orbits ~3~ with a period that is unaffected by the boundaries. Mason and his 
co-workers at McGill University conducted an extensive program aimed at 
testing the direct applicability of the Jeffrey equations to systems which can 
be realized in the laboratory. Care was taken to ensure that the typical 
viscometer gap was at least ten times the particle length. 14'5'24'621 The effect 
of narrowing the viscometer gap, to determine the range of applicability of 
Jeffrey's predictions was not explicitly tested, although, in the case of the 
flow of suspensions through tubes, Goldsmith and Mason ~24) observed that 
when a rod is about one particle length from the wall, the Jeffrey orbit is 
affected. The only theoretical study to date is that of Ingber, ezv) who used 
the boundary element technique to calculate the period of rotation of a 
single rod in a simple shearing flow between parallel planes. His 
preliminary results indicate that Jeffrey orbits can only be roughly 
maintained when the distance between the planes is more than four times 
the particle length. At this stage of his work, this appears to be a lower 
bound, and it is possible that an even larger distance is necessary. 

It is more difficult to assess the effect of rheometer boundaries on 
measurements of shear viscosity. A gap-to-particle length ratio of at least 
three is usually maintained, ~12'23"491 although rheometers have been used 
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with characteristic measuring lengths equal to or less than the particle 
lengthJ 9~ In the former case, it is likely that some effect of boundaries is 
present, but that it is well within the measurement error. In the latter case, 
it is possible that the effects of viscometer boundaries are severe. For 
suspensions of randomly oriented rods, results from recent falling ball 
rheometry experiments provide the basis for such an assessment. Wall 
effects 6 can be measured by either maintaining a fixed particle size and 
varying the diameter of the suspension container Dc,,~, ~44~ or by maintaining 
fixed container dimensions and particle aspect ratio while varying the 
dimensions of the particles. ~4s~ For particles having nominal aspect ratios of 
20, MiUiken et aL ~44) found that if Dc,,JL >~ 3.2, the measured viscosity was 
unaffected by the bounding surfaces of the container. When the D ~ / L  was 
1.6, a statistically significant decrease of about 24 % was observed, which 
was likely due to orientation of the rods along the axis of the cylinder. 

Morrison's results ~4~ using particles having aspect ratios of 30.7 and 
48 corroborate the earlier studies. For at=30.7,  when Dc,,~/L=4.7, 
[/~]=58.9, or nearly 30% greater than the value of [/~]=40.8 when 
Dr At the higher aspect ratio the measured differences in the 
intrinsic viscosities is nearly a factor of two. When D~o~/L = 3.0, [/~] = 84.0, 
while when D~,,dL=4.0, [ /~]= 155. As with Milliken et aL 144~ for both 
aspect ratios, viscosities are observed when Dco~/L is sufficiently small, 
suggesting that there is boundary-induced orientationJ 46~ 

These results bring into question whether the notion of a macroscopic 
viscosity can be considered when the characteristic viscometer length is 
less than three to four times the particle length. In shear viscosity 
measurements, the induced orientation of the rods results in a different 
characteristic particle dimension becoming relevant, namely, the particle 
diameter. Since most experiments are conducted using suspensions of small 
fibers, (23~ these measurements are made with viscometer gaps that are much 
larger than fiber diameters. The shear viscosity is therefore that of a 
substantially aligned suspension, which is consistent with the findings 
of Mondy et aL ~46) On the other hand, all systematic experiments to 
date using suspensions that are known to be.,. randomly oriented clearly 
demonstrate that the small gap in the parallel plate apparatus used by 
Bibbo et aL ~9~ in their shear inception experiments must result in 
experimental artifacts. Using gaps, as they did, which are approximateJly 
the same size as the particle length cannot result in measurements with 
randomly oriented suspensions that truly reflect material properties. 

By "wall effects" we mean effects due to the hindered particle rotations or induced orientation 
due to the presence of the container boundaries, not the extra drag experienced by the falling 
ball due the presence of the container walls, which is always adequately described ~2~'4~'5a~ 
by Eq. (10). 
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4. C O N C L U D I N G  R E M A R K S  

Except for some isolated instances, suspensions of  rodlike particles 
have proven to be particularly difficult systems both from the theoretical 
and experimental standpoints.  Recently, experiental results using falling 
ball rheometry  have provided new insights into the macroscopic  rheology, 
elucidating the effects of aspect ratio, volume fraction, and orientation 
distribution. F rom the theoretical side, the recent study of  Shaqfeh and 
Fredrickson ~581 is the basis for a new line of investigation. It now appears 
possible to systematically calculate viscosities over a wide range of 
concentrat ions for suspensions in which only hydrodynamic  forces are 
present. Other  theoretical advancements  on the horizon concern the use of 
"numerical  experiments" to stimulate the falling ball studies and applying 
Stokesian dynamics  to suspensions of  nonspherical particles. 
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